数据的标准化(归一化)

几种归一化方式

1、(0,1)标准化:

这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将Max和Min的记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:

Python实现:

1
2
3
def MaxMinNormalization(x,Max,Min):
x = (x - Min) / (Max - Min);
return x;

找大小的方法直接用np.max()和np.min()就行了,尽量不要用python内建的max()和min(),除非你喜欢用List管理数字偷笑

2、Z-score标准化:

这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,这里的关键在于复合标准正态分布,个人认为在一定程度上改变了特征的分布,关于使用经验上欢迎讨论,我对这种标准化不是非常地熟悉,转化函数为:

Python实现:

1
2
3
def Z_ScoreNormalization(x,mu,sigma):
x = (x - mu) / sigma;
return x;
1
2
3
4
5
6
def get_train_data(batch_size=60,time_step=20,train_begin=0,train_end=5800):
batch_index=[]
data_train=data[train_begin:train_end]
#标准化 np.mean(data_train,axis=0) 计算每一列的均值,np.std(data_train,axis=0)每列的标准差
normalized_train_data=(data_train-np.mean(data_train,axis=0))/np.std(data_train,axis=0)
print "normalized_train_data:\n",normalized_train_data

这里一样,mu(即均值)用np.average(),sigma(即标准差)用np.std()即可。

3、Sigmoid函数

Sigmoid函数是一个具有S形曲线的函数,是良好的阈值函数,在(0, 0.5)处中心对称,在(0, 0.5)附近有比较大的斜率,而当数据趋向于正无穷和负无穷的时候,映射出来的值就会无限趋向于1和0,是个人非常喜欢的“归一化方法”,之所以打引号是因为我觉得Sigmoid函数在阈值分割上也有很不错的表现,根据公式的改变,就可以改变分割阈值,这里作为归一化方法,我们只考虑(0, 0.5)作为分割阈值的点的情况:

Python实现:

1
2
3
4
5
def sigmoid(X,useStatus):
if useStatus:
return 1.0 / (1 + np.exp(-float(X)));
else:
return float(X);

这里useStatus管理是否使用sigmoid的状态,方便调试使用。

꧁༺The༒End༻꧂